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Introduction

» Background: LVLMs often suffer from hallucinations, generating responses that are

iInconsistent with the visual input, limiting the models’ reliability in real-world scenarios.

» Goal: In this work, we explore the potential of leveraging powerful text-to-image
generative models (e.q., Stable Diffusion) to mitigate hallucinations in LVLMs.

» Motivation: Text-to-lmage Generation C) Image-Conditioned Response Generation

/) If the generated response is non-hallucinatory, a text-to-image generative model
should be capable of reversing this process to produce a similar image.

@ Alternatively, if there is a discrepancy between the original image and the one

generated from the response, this difference can serve as valuable self-feedback,

guiding the decoding process to correct hallucinations in the initial response.

» Our Approach: We propose DeGF, a novel training-free decoding algorithm for
LVLMs that recursively enhances the accuracy of responses by integrating feedback
from generative models with complementary/contrastive decoding.

» Results: We demonstrate our DeGF can reduce various types of hallucinations,
iIncluding object existence, visual appearance, counting, efc.
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Experiments
(# Performance comparisons on POPE across 3 LVLMs with different architectures
LLaVA-1.5 InstructBLIP Qwen-VL
Setup Method
Acc.t Prec.t F1It Acc.t Prec.t F11T Acc.t Prec.T F17
Regular 83.13 8194 8344 83.07  83.02 8308 8743  93.56  86.48
VCD 87.00  86.13  87.15 8623  88.14 8588 88.80  93.80  88.11
Random  M3ID 87.50 8738 8752 86.67  88.09 8641 89.83 9544  89.17
RITUAL 8887  89.23 8881 8883 9048 8860 89.47 9632  88.62
Ours 89.03 9120 88.74 8883 9373 8771 89.73  93.19  89.31
Regular 81.17 7828 8208 77.00  73.82 7844 8470 8824  83.96
VCD 83.10 7996  83.94 80.07  77.67 80.89 8513 8727  84.69
Popular M3ID 8430 8158 8495 8097 7793 8185 8627  89.19  85.73
RITUAL 8583  84.17 86.17 8197 7890 8287 8457  84.09  84.67
Ours 86.63 8775 8628 8273  84.02 82.10 8650 89.87 85.71
Regular ~ 77.43 7331 7926 7460 7126 7645 79.83  80.13  79.73
VCD 77.17 7218 7947 7720 7429 7849 8133  80.60  81.55
Adversarial ~ M3ID 7823 7351 8022 7747  73.68 79.14 8203 8147  82.19
RITUAL 7880 7443  80.54 7873  74.57 8039 82.80  83.15  82.71
Ours 81.63 8059 8194 8030 8090 80.11 8347 8449  82.98

or contrasting the logits for each generated token based on the measured divergence
between the two predicted probability distributions .
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= Zeo g | as the main animals. They are both sitting at a = coffee mugs, each adorned with a different Complementary Decodlng: If two predlctlons are allgned on 3 SpeCIfIC token CHAIRs | CHAIR; | RecallT Length?
B0 L)) table set for a picnic, enjoying each other's 8o Mario character from the popular video game Co . . o - D Regular 173.75 @ar9) 12167 t12.4n 11792 &3.69)  149.17 751 Reoul 6.2 0.4 58 53 4
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~ = ~ , (X Contrastive Decoding: Conversely, if there is a significant discrepancy between RITUAL 18750 k200 13958 ko 12500 ckrozn 16417 csosn (o 20 T e e a0
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The image features a group of three animals, & The image features a collection of three white ] _ == - Oours 188.33 (12.80) 150.00 (17.60)  133.89 (13.85  172.22 (13.47) Ours 18.4 6.1 62 7 541
including a bear. a cat, and a rabbit. They are mugs placed in a row, each featuring a well- as a contrasting reference to refine the initial next-token prediction. ' ' ' ‘
sitting around a table, likely eating cookies, £ known video game character, Mario, from the * Efficiency: Our approach involves two Method Avg. Latency | GPU Memory | CHAIRg | é Case StUdy on LLaVA-Bench
2 ;Nith plates of food in front of them. v § ’ Bopular Nintendo series. v que ries and incorporates a text.to-image Regular 3.44 s (x1.00) 15778 MB (x1.00) 55.0 Visual Input: [Regular Decoding] GPT-4V-Aided Evaluation: Accuracy: 4 Detailedness: 5
i . : gene rative model to mltlgate hallucinati ons, XSERA 264.971083((X><2;.)11;) égggg ﬁg E: 1:22 g;g This image portrays a strategically placed tropical hill, punctured with a road branching out through it, giving the
Em plrlcal Stu dy reSUIting in 3 4.04X increase in IatenCy and Woodpecker 106Bsewum 22199 MB pensn 57 6 appearance of a mountain. The island below the mountain appears to have beautiful blue waters, making for a
_________________________________ ) HALC 22.61 s (x6.51) 23084 MB (x1.46) 51.0 picturesque view. On the East coast of the bay, there are several houses and buildings, some situated on the
Ve ~ . .
\ We demonstrate that text-to-image generative models can provide valuable self- a 1.21X increase in GPU memory usage. Ours 13.89 s (x404) 19119 MB (x1.21) 48.8 beach near the water.The overall skyline captures a cohesive and captivating island landscape. Take a closer look
l feedbaCk fOr mltlgatlng ha”UCinationS at bOth the response and tOken Ievels. l T k at the cloudy sky, which creates a serene and natural atmosphere for the charming scene.
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. : SO R Y : : : : appears to be a volcano, with greenery surrounding it. The island is located near the ocean, and it has a road
between the original image and hallucinations in LVLMs and demonstrate that these models can provide valuable

running along the bottom of the mountain. The surrounding area is filled with houses, indicating that the island is

generated image corresponds to
higher rates of hallucinations.

self-feedback for mitigating hallucinations at both the response and token levels.

inhabited. The island is surrounded by mountains, providing a picturesque and serene landscape.The combination
Query: Describe this photo in detail.

of the ocean, the mountain, and the houses creates a unique and beautiful environment.
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consistently outperforms previous approaches in mitigating hallucinations in LVLMSs.
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